Content Summary via Webhook

Comprehensive AI-powered workflow for extracting, transcribing, summarizing, and analyzing content from various file types using Gemini LLM

Tutorial Video


Pipeline Overview


Pipeline Components

🌐 Web Hook

Receives uploaded files via HTTP

βš™οΈ Parse/Process/Embed

Extracts and processes document content

🎡 Audio – Transcribe

Converts audio/video to text (when applicable)

🧠 Text – Summarization: LLM

Creates intelligent summaries using Gemini

πŸ“€ Response

Returns structured JSON output


How to Use the Pipeline

Start the Pipeline

  1. Run your pipeline in the Aparavi Engine
  2. Look for the Webhook URL message in the Project Log
  3. Copy the webhook URL (e.g., http://localhost:8080/webhook/...)

Configure API Testing Tool

We recommend using Talend API Tester for easy testing:

Request Configuration

Field Value Description
Method PUT HTTP method for file upload
URL Your webhook URL The URL from Step 1
Content-Type Auto Automatically set based on file type
Authorization Your API key Found in the webhook URL parameters

Body Configuration

  • Type: File
  • Upload Method: Drag & drop or click to browse
  • Supported Formats: PDF, DOC, DOCX, TXT, MP3, MP4, and more

Send and Process

  1. Upload your file to the request body
  2. Click “Send” to submit the request
  3. Wait for processing (typically 10-30 seconds)
  4. Check response status:
    βœ… 200 OK
    Success
    ❌ Error codes
    Check file format and size

Extract Results

Response Structure

{
  "data": {
    "objects": {
      "cce2fa78-f7fb-5a2e-b391-7c896aeda5cf": {
        "text": "Your processed content here..."
      }
    }
  }
}

Extracting Content

  1. Open the response JSON
  2. Navigate to: data/objects/[object-id]/text
  3. Copy the text content – this is your processed output

Component Details

1. Web Hook Connector

Purpose: Receives HTTP file uploads and triggers pipeline processing

Configuration:

  • Protocol: webhook://
  • Class Type: source
  • Capabilities: noinclude
  • Register: endpoint

Supported Input Types: tags, text, audio, video, image

2. Parse/Process/Embed Connector

Purpose: Extracts content from various document formats and prepares for processing

Configuration:

  • Protocol: autopipe://
  • Class Type: other
  • Capabilities: internal
  • Register: filter

3. Audio – Transcribe Connector

Purpose: Converts audio and video content to text using Whisper models

Configuration:

  • Protocol: audio_transcribe://
  • Class Type: audio
  • Register: filter

Model Options

Model Speed Accuracy Use Case
Tiny Fastest Lowest Quick processing
Base Fast Low General use
Small Medium Medium Balanced
Medium Slow High Quality focus
Large Slowest Highest Best quality

4. Text – Summarization: LLM Connector

Purpose: Creates intelligent summaries, key points, and entity extraction using Gemini LLM

Configuration:

  • Protocol: summarization://
  • Class Type: text
  • Register: filter
  • Invoke: Requires LLM connection

Configuration Options

Setting Description Default
Number of Summaries Chunks to summarize after document split Optional
Summary Words Words per summary (0 = disabled) Optional
Key Point Words Words per key point (0 = disabled) Optional
Entities Number of entities to extract (0 = disabled) Optional

5. Response Connector

Purpose: Returns structured JSON responses with processed content

Configuration:

  • Protocol: response://
  • Class Type: target
  • Register: filter

Supported File Types

πŸ“„ Documents

  • PDF (.pdf)
  • Microsoft Word (.doc, .docx)
  • Text Files (.txt)
  • Rich Text (.rtf)

🎡 Media Files

  • Audio: MP3, WAV, M4A, FLAC
  • Video: MP4, AVI, MOV, MKV
  • Images: JPG, PNG, GIF, TIFF

πŸ“Š Other Formats

  • Presentations: PPT, PPTX
  • Spreadsheets: XLS, XLSX
  • Web Content: HTML, XML

Error Handling

Common HTTP Status Codes

Code Meaning Solution
200 Success βœ… Processing completed
400 Bad Request Check file format and size
401 Unauthorized Verify API key
404 Not Found Check webhook URL
500 Server Error Restart pipeline

Troubleshooting Tips

  • File Size: Ensure files are under 100MB
  • Format: Use supported file types
  • API Key: Verify authorization header
  • Pipeline: Ensure all components are running
  • Network: Check connectivity to webhook endpoint

Performance Considerations

Processing Times

File Type Size Estimated Time
Text Document < 1MB 5-10 seconds
PDF Document 1-10MB 10-30 seconds
Audio File 5-30 minutes 30-60 seconds
Video File 1-10 minutes 1-3 minutes

Security and Authentication

API Key Management

  • Location: Found in webhook URL parameters
  • Format: Long alphanumeric string
  • Security: Keep private and secure
  • Rotation: Change regularly for production use

Request Validation

The pipeline validates:

  • File format compatibility
  • File size limits
  • API key authenticity
  • Request method (PUT only)